The Phylogenetic Indian Buffet Process: A Non-Exchangeable Nonparametric Prior for Latent Features

نویسندگان

  • Kurt T. Miller
  • Thomas L. Griffiths
  • Michael I. Jordan
چکیده

Nonparametric Bayesian models are often based on the assumption that the objects being modeled are exchangeable. While appropriate in some applications (e.g., bag-ofwords models for documents), exchangeability is sometimes assumed simply for computational reasons; non-exchangeable models might be a better choice for applications based on subject matter. Drawing on ideas from graphical models and phylogenetics, we describe a non-exchangeable prior for a class of nonparametric latent feature models that is nearly as efficient computationally as its exchangeable counterpart. Our model is applicable to the general setting in which the dependencies between objects can be expressed using a tree, where edge lengths indicate the strength of relationships. We demonstrate an application to modeling probabilistic choice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricted Indian buffet processes

Latent feature models are a powerful tool for modeling data with globally-shared features. Nonparametric exchangeable models such as the Indian Buffet Process offer modeling flexibility by letting the number of latent features be unbounded. However, current models impose implicit distributions over the number of latent features per data point, and these implicit distributions may not match our ...

متن کامل

Posterior Contraction Rates of the Phylogenetic Indian Buffet Processes.

By expressing prior distributions as general stochastic processes, nonparametric Bayesian methods provide a flexible way to incorporate prior knowledge and constrain the latent structure in statistical inference. The Indian buffet process (IBP) is such an example that can be used to define a prior distribution on infinite binary features, where the exchangeability among subjects is assumed. The...

متن کامل

Clusters and Features from Combinatorial Stochastic Processes

In partitioning-­‐-­‐-­‐a.k.a. clustering-­‐-­‐-­‐data, we associate each data point with one and only one of some collection of groups called clusters or partition blocks. Here, we formally establish an analogous problem, called feature allocation, for associating data points with arbitrary non-­‐negative integer numbers of groups, now called features or topics. Just as the exchangeable partit...

متن کامل

Correlated Non-Parametric Latent Feature Models

We are often interested in explaining data through a set of hidden factors or features. When the number of hidden features is unknown, the Indian Buffet Process (IBP) is a nonparametric latent feature model that does not bound the number of active features in dataset. However, the IBP assumes that all latent features are uncorrelated, making it inadequate for many realworld problems. We introdu...

متن کامل

A Birth-Death Process for Feature Allocation

We propose a Bayesian nonparametric prior over feature allocations for sequential data, the birthdeath feature allocation process (BDFP). The BDFP models the evolution of the feature allocation of a set of N objects across a covariate (e.g. time) by creating and deleting features. A BDFP is exchangeable, projective, stationary and reversible, and its equilibrium distribution is given by the Ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008